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Abstract

Objective: Given conflicting recommendations in the literature, this report seeks to present

a standard protocol for applying principal components analysis (PCA) to event-related 

potential (ERP) datasets.

Methods: The effects of a covariance versus a correlation matrix, Kaiser normalization vs. 

covariance loadings, truncated versus unrestricted solutions, and Varimax versus Promax 

rotations were tested on 100 simulation datasets.  Also, whether the effects of these parameters 

are mediated by component size was examined.

Results: Parameters were evaluated according to time course reconstruction, source 

localization results, and misallocation of ANOVA effects.  Correlation matrices resulted in 

dramatic misallocation of variance.  The Promax rotation yielded much more accurate results 

than Varimax rotation.  Covariance loadings were inferior to Kaiser Normalization and 

unweighted loadings.

Conclusions: Based on the current simulation of two components, the evidence supports 

the use of a covariance matrix, Kaiser normalization, and Promax rotation.  When these 

parameters are used, unrestricted solutions did not materially improve the results.  We argue 

against their use. Results also suggest that optimized PCA procedures can measurably improve 

source localization results.

Significance: Continued development of PCA procedures can improve the results when 

PCA is applied to ERP datasets.

Keywords: Event-related Potentials, Principal Components Analysis, Source Localization
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Optimizing Principal Components Analysis Of Event-Related Potentials: Matrix Type,

Factor Loading Weighting, Extraction, And Rotations

Joseph Dien, Daniel Beal, and Patrick Berg

Event-related potentials are the electrophysiological signals recorded from the scalp surface

that are time-locked to an event of interest, such as the presentation of a word.  The waveform

recorded at a site on the head, typically over the course of a second, represents a complex

superposition of different overlapping potentials,  termed components.   Such recordings can

stymie visual  inspection,  especially  when obtained with a high-density montage containing

over  a hundred recording sites.   The complex superpositions  involved can also complicate

source localization efforts when trying to co-register with fMRI datasets.

A common approach for decomposing an ERP dataset into its constituent components is

principal components analysis or PCA (Dien & Frishkoff, in press; Donchin, 1966; Glaser &

Ruchkin, 1976; Möcks & Verleger, 1991).  This method summarizes the relationships between

the variables (such as recordings at each time point) as latent variables that ideally correspond

to the individual components.  While PCA latent variables are normally termed "components,”

to avoid confusion with ERP “components” this report will use the term "factors."  We suggest

this is a reasonable convention since “factor analysis” is used as a general term for principal

component analysis (which normally uses the term “component”) and principle axes factoring

(which normally uses the term “factor”).  We also suggest this is a reasonable convention since

these two major types of factor analysis are essentially identical in the context of ERPs where

the  communalities  are  essentially  at  unity  (during  the  initial  factoring  of  the  relationship

matrix),  so  replacing  the  diagonal  with  the  communalities  does  not  materially  change  the

relationship matrix  (cf. Gorsuch, 1983).  We also suggest this is reasonable because “factor

analysis” is used as a generic term for both types of analysis.  The term “components” will
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therefore be used to refer to coherent patterns of covariance in ERP data that can be usefully

replicated and interpreted (Donchin, Ritter, & McCallum, 1978).

Principal Components Analysis

Although the ideal result of a PCA is to achieve a one-to-one relationship between the

factors  and  ERP  components,  the  unrotated  factors  are  most  likely  combinations  of  ERP

components.  The reason for this is that the initial extraction criterion of maximizing variance

for  each  successive  factor  can  often  be  best  met  by  including  variance  from  multiple

components.   The rotation  procedure seeks  to establish  a simpler  relationship  between the

factors and the components that is more likely to correspond to constructs of interest (Gorsuch,

1983).  In this simulation study, we operationally define simplicity as the extent to which a

single factor corresponds to a single simulated component. 

In order to do so, the eigenvectors are converted to factor loadings, a term that can refer to

either the factor pattern matrix or the factor structure matrix.  The factor pattern matrix is the

beta weights for generating the variables from the factor scores (for the case where both the

variables and the factor scores are standardized).  The factor structure matrix is the correlations

between the variables and the factors.  For an orthogonal rotation (see below) the factor pattern

matrix and the factor structure matrix are identical.

Most PCAs are conducted using the Varimax rotation (Kaiser, 1955), although others are

available.  In this approach, pairs of factors are rotated in the two-dimensional space formed by

their two axes such as to maximize the sum of the variances of the squared loadings.  The

factors are systematically rotated in pairs until changes are negligible.  This procedure has the

effect that factor loadings tend to be as extreme as possible (either zero or high), a quality

shared by other members of the Orthomax family of rotations (Gorsuch, 1983; Mulaik, 1972).

This is an appropriate criterion for ERP datasets (especially for a temporal PCA) since most
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ERP components (with the exception of DC shifts) tend to be restricted to a discrete set of time

points.

Most implementations of Varimax utilize a later modification termed "Normal Varimax"

(Kaiser,  1958),  although  some statistics  packages  like  BMDP allow  this  to  be  turned  off

(Dixon, 1992, p. 357).  In this procedure, prior to rotation, the factor loadings are reweighted

by the communalities, the portion of the variance accounted for by each variable.  This is done

by dividing each factor loading by the communality.  After rotation, the weighting process is

reversed.

It is also possible to use covariances instead of correlations during the rotation step (as the

factor  loadings).   This  is  essentially  an  alternative  to  the  Kaiser  normalization  in  that  it

represents a different way of weighting the factor loadings. Kayser and Tenke (2003) proposed

applying  this  procedure  to  ERPs,  terming  them unstandardized  solutions.   We  found  this

terminology  to  be  somewhat  confusing  since  there  are  several  ways  a  solution  may  be

standardized (such as the factor scores) and will therefore refer to such a procedure as using

covariance loadings, as opposed to the usual procedure in which the loadings are correlations

(Tabachnick & Fidell, 1989, p. 599).

A final, optional step is implemented by the Promax rotation (Hendrickson & White, 1964).

In  this  step,  a  Procrustes  algorithm  is  utilized  to  relax  the  orthogonality  restriction  by

individually rotating each individual factor (in the factor pattern matrix) to a simpler solution

(defined as larger high loadings and smaller low loadings) without regard to the other factors.

Such a solution may be reasonably expected to better approximate the real underlying structure

of the ERP component to the extent that it really is characterized by being temporally delimited

(high for some time points and essentially zero for the others).  Of course, factors may remain

orthogonal, depending on the data.  The amount of relaxation is determined by a parameter

called Kappa.
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The Issues

The impetus for ERP papers on PCA is that PCA was developed by statisticians primarily

with psychometric data in mind and hence is optimized for questionnaire data rather than ERP

data.  There is therefore a need to evaluate what the most effective parameters are for ERP

datasets.  The present paper will evaluate potential choices for the relationship matrix, factor

loading weighting, unrestricted solutions, and rotation.

1.  Relationship Matrix.  In the ERP literature reviews have recommended the covariance

matrix  (Curry,  Cooper,  McCallum,  Pocock,  Papakostopoulos,  Skidmore,  & Newton,  1983;

Donchin & Heffley, 1979; Möcks & Verleger, 1991) but have also suggested the choice does

not make a difference (Chapman & McCrary, 1995; van Boxtel, 1998). Studies continue to be

published  with  both  correlation  (Liu  &  Perfetti,  2003) and  covariance  (Papo,  P.-M.,

Hugueville, & Caverni, 2003) matrices.  Comparisons with real data do suggest this choice

makes a difference  (Curry et al., 1983; Dien, Spencer, & Donchin, 2003b; Kayser & Tenke,

2003) but cannot say which is more accurate without inarguable knowledge of the underlying

ERP components, which is not yet possible.  Simulation studies have the strength of having

known correct answers but are limited by their realism.  An initial study using simulations (as

well as real data) supports the use of covariance matrices (Kayser & Tenke, 2003).  This report

provides an even more realistic simulation study of this issue.

The  sum-of-squares-cross-products  (SSCP)  matrix  will  not  be  addressed  due  to

complexities outside the scope of these simulations. For average reference datasets, such as the

present, the SSCP is essentially identical to the covariance matrix for temporal PCA because

the average reference sets the mean for every time point to zero.  For other reference schemes,

the effect of the SSCP depends on reference site activity.  To the extent that there is activity at

the reference site, the inverse of the activity will be superimposed on the other recording sites,

resulting  in  a  non-zero  mean.   Mean correction  (covariance  and correlation  matrices)  will

normally remove this mean (desirable) as well as shared activity that does not sum to zero (not
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desirable).  For a mean mastoid reference, a SSCP matrix can result in a factor with the shape

of  the  dataset  means  (Curry  et  al.,  1983).   For  more  information  on the  ramifications  of

reference choice, see (Dien, 1998b).  For spatial PCA, the SSCP will also be identical to the

covariance matrix to the extent that the head's surface is evenly and comprehensively sampled

since the integral of the potential fields over a spherical surface will sum to zero.  The SSCP

will differ from the covariance matrix to an extent that will be dependent on the particular

montage used relative to the orientation of the ERP components.   Given the unpredictable

effects that these parameters can have on the SSCP results, it is not recommended.

2.  Factor loading weighting.  

Another important parameter is choice of factor loading weighting during rotations.  In a

conventional  truncated solution the majority  of the factors are dropped with the result  that

some of the variance of each variable has been discarded (presumably noise variance).  Some

variables will be affected more by this process than others (presumably variables with a lower

signal-to-noise  ratio).   Such  variables  will  have  lower  communalities  (the  amount  of  the

variance accounted for by the factor solution) and will hence have less influence on the rotation

process.

In Kaiser normalization the loadings of each variable are divided by the square root of their

communalities to ensure that each variable has equal influence on the rotation process (their

communalities are normalized to all equal one for the duration of the rotation).  Kaiser (1958)

advocated the use of this procedure in his original formulation of the Varimax on the grounds

that it counteracts the tendency for larger factors to dominate the rotation process.  This has

become such an integral part of the Varimax rotation that it is the default in statistics packages

such as BMDP (Dixon, 1992, p. 357).  The graphical user interface of SPSS does not give the

option  to  turn  Kaiser  normalization  off  (SPSS,  2001),  although  it  is  possible  through  the

command syntax interface.  JMP does not even give the option to turn it off  (SAS Institute,

2002).
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Examining the effects of Kaiser normalization on ERP analyses is worthwhile since Kaiser

based  his  recommendation  on  datasets  in  which  the  variables  tended  to  have  comparable

amounts of signal.  In ERP data, one would expect this procedure to also amplify the effect of

the noise inherent in the inactive time points (which normally have very low communalities

during rotation since the factors representing most of their  noise have been dropped at  the

retention stage).

Software packages such as BMDP also offer the option of using covariance loadings rather

than correlation loadings.  Covariance loadings are factor loadings in which the loadings are

multiplied  by  the  variable  variances  in  order  to  give  more  influence  to  the  more  active

variables.  This is essentially the opposite effect of the Kaiser normalization.  An argument has

been made for using this weighting scheme with ERP datasets (Kayser & Tenke, 2003).  These

two  weighting  schemes  are  mutually  incompatible1,  so  a  three-way  comparison  between

unweighted, Kaiser Normalization, and covariance loadings is needed.  This report provides

such a comparison for ERP datasets for the first time.

3.  Unrestricted Solutions.   Another issue is whether to truncate factor solutions prior to

rotation, as is the norm or to use an unrestricted (or untruncated) solution.  Kayser and Tenke

(2003)  argue  that  all  factors  should  be  retained  in  the  final  solution  on  the  grounds  that

underextraction (retaining too few factors) degrades solution quality  (Fava & Velicer, 1992,

1996; J. M. Wood, Tataryn, & Gorsuch, 1996).While this is a reasonable concern, there are

also  good  arguments  against  this  procedure.  The  chief  problem  is  multiple  comparison

problems.   A chief  motivation  for  high-density  ERP researchers  to  use PCA is  to  control

multiple  comparison problems.  The procedure  recommended  by Kayser  and Tenke  (2003)

could easily result in several hundred factors, and it is not clear what researchers are to do

when presented with this situation.  Obviously, investigators cannot choose a factor at random

for formal analysis; however, a choice must necessarily be made as to which ones to formally

analyze.  Regardless of whether the choice is made on the basis of a visual inspection of the
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waveforms or using a formal statistical test, it still constitutes an opportunity to capitalize on

chance variations and hence a Type I error rate hazard.  Consider a 128-channel dataset with

two conditions and a one-second epoch digitized at 250 Hz.  In the course of normal analysis,

there are 128 channels times perhaps eight general time windows resulting in 1,024 possible

comparisons.  At an alpha of .05, this virtually guarantees 51 significant spurious results.  Lack

of independence between the channels means the situation is not actually quite so dire (the true

dimensionality is likely less than 128) but it remains that such datasets are full of potential

effects that do not replicate and are likely to be false positives.  The most effective strategy is

to use a priori knowledge about ERP components to identify real components such as the P300

but many components are not yet characterized.  While multiple comparison procedures such

as the Bonferroni are available they drastically reduce statistical power (in this case reducing

the alpha threshold to 0.00005 for the Bonferroni).  

PCA will help control the multiple comparison problem only for truncated solutions.  A

typical 12-factor temporal PCA solution reduces the number of comparisons from 1,024 to just

12 if one restricts the ANOVA to a single channel or uses a two-step PCA to generate a spatial

factor from the temporal PCA results.  As noted elsewhere  (Dien, 1998a; Spencer, Dien, &

Donchin, 1999, 2001), a straight temporal PCA will conflate different ERP components with

similar time courses so a two-step PCA (temporo-spatial or spatio-temporal) is preferable.  In a

temporo-spatial PCA with 12 temporal factors followed by 5 spatial factors the total number of

factors is 60 which still suffers multiple comparison problems but is a vast improvement over

1,024 potential comparisons.  Furthermore, if one has a priori grounds for restricting analyses

to a particular time window (such as the N400 window) then this can reduce the analysis to just

five potential comparisons.  If one also has a priori knowledge about scalp topography, one

may be able to restrict the analysis to a single factor.

In  contrast,  an  unrestricted  temporal  PCA would  yield  250  factors  (in  the  absence  of

collinearity,  which is generally the case for ERP datasets).  A temporo-spatial PCA with 5

9



Dien Optimizing PCA

spatial factors would balloon the number of factors to 1,250 leaving one with an unresolved

multiple comparison dilemma.  Even if one restricts analysis to a single window of interest

(such  as  the  N400  window),  with  so  many  temporal  factors  dozens  will  fall  within  this

window; likewise with scalp topographies.  We do not believe it is defensible to examine all

these factors without some sort of control for multiple comparisons.

The  question  of  whether  to  truncate  also  raises  more  fundamental  issues  of  analysis

philosophy.   Consider,  for  example,  the  N400  component.   This  component  is  largely

temporally invariant with a peak at about 400 ms. At an individual level, however, there will be

variations in the exact time course even in the averaged waveform.  In a truncated PCA, a

single factor  will  generally  capture the central  tendency of the individual  N400s since the

initial factors of the unrotated solution are designed to capture the maximum possible variance;

the variance corresponding to the sometimes subtle individual variations will be represented in

the smaller factors that are dropped.  In an unrestricted solution, on the other hand, it is entirely

possible that each individual subject's version of the N400 will have a separate factor.  Whether

this  is  good or  not  depends  on  whether  one  is  pursuing an  analysis  of  the  group  central

tendency or a more case study approach.

Kayser and Tenke (2003) acknowledge that overextraction can cause problems too (Fava &

Velicer, 1992, 1996) but conclude that it is "a less serious problem" on the basis of another

study (J. M. Wood et al., 1996) and their own data.  Wood et al. (1996), however, point out

that overextraction is still a serious problem and "recommended that researchers use reliable

methods to estimate the number of factors before extraction" (p. 361).  The following passage

describes some of the drawbacks of overextraction:

The  effects  of  overextraction,  followed  by  rotation,  are  less  well

documented  but  equally  important.   Comrey (1978) describes  some of the

dangers, such as minor factors being built up at the expense of major factors

and/or  the  creation  of  factors  with  only  one  high  loading  and  a  few low
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loadings.   These  are  factors  that  are  both  uninterpretable  and  unlikely  to

replicate (Velicer & Jackson, 1990 p. 432).

The  present  report  will  contrast  the  quality  of  the  results  produced  by a  conventional

truncated  solution  against  an  unrestricted  solution.   If  a  limited  number  of  factors  can

accurately reproduce the simulated components, this result would provide evidence that the

multiple comparisons problem posed by unrestricted solutions is not necessary.

Ultimately, the question of factor restriction (or truncation as it is also termed) involves

weighing  two contrasting  imperatives  of  science.   The first  imperative  is  the  need to  use

informed expertise to flexibly interpret data using knowledge of prior experiments, theoretical

expectations, and well-trained observation.  While the value of expertise is indisputable, the

experience of the introspectionists such as Titchener and Wundt at the turn of the twentieth

century demonstrated the limits of such an approach.  When one relies solely on expertise one

is  vulnerable  to  the  situation  wherein  two  equally  eminent  experts  come  to  differing

conclusions.  Further compounding the problem is that the process of arriving at an expert

judgment is often not readily documented, leading to an inability for other labs to replicate the

decision-making.  Using expertise to choose which factor of hundreds is meaningful is very

much an exercise in expertise with all its strengths and weaknesses.

The  contrasting  imperative  is  systematic  objectivity,  which  is  the  need  to  develop  a

procedure that can mechanically yield an objective judgment.  The value of such an approach

is that such a system can be explicitly documented and hence replicated and improved upon.

Furthermore, the bases for discrepant judgments of two such systems can be readily contrasted

for reconciling discrepancies.  There is also no concern about subjective biases or expectancies

contaminating the judgment process.  The drawback of such an objective system is that it will

tend to be mechanical, inflexible, and limited.  The use of the Scree test to control the multiple

comparison problem is an example of a relatively objective system to constrain the drawbacks

of the former approach while not seeking to replace it.   Ultimately expertise  is absolutely
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essential to the data analysis process but it needs to be constrained by an objective system to

minimize the amount of decision-making to the point where the decisions that are made can be

documented and justified.

4. Rotation.  The final parameter is rotation choice.  The first author has elsewhere argued

that an oblique rotation like Promax (Hendrickson & White, 1964) yields better results than the

standard Varimax rotation.  Extraction of simulated components was markedly more accurate

with a simulated dataset (Dien, 1998a).  In a further test, a PCA of the P300 in a real dataset

compared the source solutions from a Varimax and a Promax rotation.  Since the TPJ is the

only area that is consistently shown to be activated in fMRI and PET oddball paradigms (Dien,

1998a) and lesions in this region abolish the P300  (Knight, Scabini, Woods, & Clayworth,

1989), this is a likely source for the P300.  The Promax yielded a P300 factor that localized to

the TPJ.  Since other researchers continue to express reservations about the Promax rotation

(cf. Kayser & Tenke, 2003), this report will further test the efficacy of the Promax rotation.

There is a particularly strong argument for oblique rotations in ERP analyses because in a

temporal  PCA  the  effect  of  scalp  topography  is  to  introduce  correlation  between  the

components  (the  degree  to  which  the  components  co-occur  in  the  observations  is  partly

determined by the extent to which they are represented in the same channels). For example,

two superficial  components  with  sources  with phi  values  30 degrees  apart  can  result  in  a

correlation  of  .76  from  spatial  variance  alone.   For  further  discussion  of  how  spatial

topographies produce correlations even between unrelated components in temporal PCA, see

(Dien, 1998a).

Simulation Analyses

When considering simulation studies, one must consider their strengths and weaknesses.

Simulations by their nature will never be as realistic as real data.  The trade-off is between

realism and control.  The issue is analogous to that faced by all experiments.  The rigorously
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controlled  experimental  designs  we use  to  study language,  for  example,  rarely  bear  much

resemblance to real reading situations; nonetheless, we find them to be of real value because

they  represent  simplified  and  tightly  controlled  situations  that  make  it  possible  to  obtain

reliable and interpretable results.  In much the same fashion, the strength of simulations is that

they make it possible to form a controlled and simplified environment in which one can make

conclusions.  Furthermore, the problem with real data for this sort of study is that one does not

know the “real” answer. 

On the other hand, an unrealistic simulation is of no use no matter how controlled it might

be.  The present simulations not only meet the standards set by previously published simulation

studies, it improves upon them.  In contrast to earlier studies that included simulation analyses

of  these  issues  (Dien,  1998a;  Kayser  &  Tenke,  2003),  the  present  dataset  utilizes  real

background EEG noise, a more realistic head topography, and subject variance.  The use of

background EEG is especially important since the noise utilized in both studies were not auto-

correlated  across  the  variables,  unlike  real  EEG noise,  making this  a  much more  realistic

challenge for the PCA algorithm.  Furthermore, the dataset includes more than one source of

coherent  variance  in  that  the  two  simulated  components  have  amplitudes  that  vary

independently, making it possible for them to be distinguished by the PCA.

Nonetheless, one must keep the inherently artificial nature of simulations in mind when

evaluating the results. For example, the present simulation datasets contain only two simulated

components.  Although  a  real  dataset  has  more  than  two  ERP  components,  adding  more

components can introduce complex interactions that would make it  difficult  to evaluate the

effects of the manipulations.  Additionally, the presence of the background EEG ensures that

the overall dimensionality of the dataset is high and more comparable to that of a real ERP

dataset (at least an ERP dataset with two components).  Furthermore, the waveforms and scalp

topographies do not vary between conditions or between subjects.  Although such variations

could be added, there is something of a chicken-and-an-egg situation with respect to making
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such variations realistic.  An effective PCA technique would be needed to determine the exact

nature of such variations separate from superimposed noise but a fully realistic simulation test

of PCA effectiveness would need such information to be constructed.  Finally, the simulated

components are not real components nor are they meant to be.  Instead they are meant to be

representative  of  some  of  the  full  spectrum  of  possibilities.   Constructing  fully  realistic

simulated components would again require information that is not currently available and is a

goal that this current work is meant to help advance towards.

The choice of how to evaluate the simulations is a critical concern.  For an ERP researcher,

the three chief characteristics of interest of the PCA solutions are the reconstruction of the time

course, the reconstruction of the spatial  topography, and the allocation of condition effects.

Rather than use a global measure of factor accuracy that agglomerates all three aspects of the

solution into a single measure, this report measures each aspect separately.  In this way, ERP

researchers can determine what effect the different manipulations have on the particular aspect

of most interest to their own research (for example, scalp topography for source localization or

misallocation of variance for an experimentalist).  These three measures together measure the

full variance represented in the dataset (temporal, spatial, condition, and subject).

1)  Waveform  time  course.  Fit  was  measured  as  the  correlation  between  the  two

waveforms,  using  the  time  points  as  the  observations.   The correlation  measure  was  used

because it is familiar to most readers and because it standardizes the two variables, removing

the effects  of amplitude.   Amplitude was removed because otherwise the effects  on spatial

topography  and  condition  effects  would  necessarily  be  confounded  with  the  time  course

measure.  Furthermore, the raw factor loadings cannot be directly examined without rescaling

because the actual factor reconstructions are a joint function of the factor loadings and the

factor  scores  multiplied  together.   For  example,  a  given  feature  in  the  data  could  be

reconstructed by the PCA as either the product of a set of small factor loadings multiplied by a

large  factor  score  or  a  set  of  large  factor  loadings  multiplied  by  a  small  factor  score.
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Examining the amplitude of the factor loadings in the absence of the factor score information

would be meaningless.  By using the correlation measure, only the shape of the waveform is

evaluated, without concern for the effects of the factor scores, which are in turn evaluated by

the other two measures.

2) Spatial topography.  In order to evaluate success at reconstructing spatial topography in

a concise manner, dipole localization was adopted as a simple summary measure.  Since dipole

localization is directly dependent on scalp topography, success at reconstructing the original

dipole  location  can  be  construed  as  success  at  reconstructing  the  scalp  topography.

Furthermore, source localization is the primary analysis where accurate scalp topography is

required  so  this  measure  has  direct  relevance  for  the  utility  of  these  parameters  for  ERP

research.  The residual variance (RV) provides a measure of fit between the factor topographies

and the original  components.   An additional  goal  of  these analysis  is  to  help evaluate  the

helpfulness of PCA as a preprocessing step when co-registering ERP data with fMRI data.  For

this purpose, data is provided on the degree of localization error in Talairach space.  Since

fMRI  data  contains  only  location  information,  not  orientation  information,  only  location

information is provided.

3)  Misallocation  of  condition  effects.  Ever  since  the  publication  of  the  influential

demonstration by Wood and McCarthy  (1984) that PCA can misallocate condition effects to

the wrong factor, misallocation of variance has been a primary concern of ERP researchers.

For this reason, this has been chosen as the third measure of solution accuracy.  Not only does

it  examine  the  remaining  variance  (condition  and subject)  not  examined  by the  prior  two

measures but also it has direct import regarding the utility of the PCA procedures for ERP

datasets.

PCAs of ERPs can be conducted with a number of data arrangements including temporal

PCA with  time points  as  the  variables,  spatial  PCA with  channels  as  the variables  (Dien,

1998a; Ruchkin, Villegas, & John, 1964), and two-step PCA with a combination of the two
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(Dien et al., 2003b; Spencer et al., 1999, 2001).  To keep the present comparisons simple, only

the  most  common arrangement,  temporal  PCA, will  be  utilized.   This  does  mean that  the

present results are specific to this approach and it is possible that a different approach would

yield different results.

For the simulation study, all  twelve combinations  of the parameters  of interest  will  be

compared: correlation versus covariance matrix, no weighting versus Kaiser normalization vs.

covariance weighting, and Varimax versus Promax rotations.  In addition, all simulations will

be examined with and without unrestricted solutions (all factors retained) to evaluate this issue.

Another point of especial interest is whether a given manipulation has a greater effect on the

smaller or the larger component.  It is possible that the optimal combination of parameters

might  depend on whether  the component  of  interest  is  a smaller  or  larger  component;  for

example, as noted earlier the Kaiser normalization procedure is explicitly intended to favor the

smaller  components.   In order to address confounds present in these comparisons (latency,

topography,  and condition  effect),  a  second study examines  three  further  variations  of  the

simulation dataset to determine if any of the differences between the Component 1 and the

Component 2 accuracies are mediated by component size.

Methods

For the current simulation study, the true number of signal components is known so a fixed

number of factors will be chosen based on a simple Scree test.  In any case, even if the number

of  factors  retained was too small,  this  underextraction  would affect  all  the conditions  and

would therefore not produce a confound in the comparisons.  In order to ensure that this is the

case, unrestricted solutions with all 65 factors were also analyzed and presented for the first

study.

The  focus  of  the  following  simulation  datasets  is  to  evaluate  the  specific  principles

necessary to evaluate the present procedures.  The test datasets were constructed to represent a
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simple average with twenty subjects, two conditions (small and large Component 1), 125 time

points, and 65 channels.  100 simulation datasets were constructed and were used for all four

simulation tests.  All simulation datasets and the elements used to construct them are available

upon request.

Two identical overlapping components were introduced for examination, a sharply peaked

Component 1 and a broader Component 2 (which are not meant to represent any particular real

components  since doing so would entail  addressing issues outside the focus of this  work).

These components were constructed from a half-sine wave covering ten and thirty time points

respectively  (for details, see Dien, 1998a).  The two components start at samples 39 and 41

respectively.  The peak amplitude of each of the two components was independently varied

from 2 to 4 microvolts for each set of 65 channels times 125 time points.  Subject variance

(correlation between the two component amplitudes) was simulated by setting the amplitude of

the Component 2 to be the mean of the Component 1 amplitude and of an independent 2 to 4

microvolts value. The peak amplitude of the Component 2 at the focal channel in the small and

large Component 1 cells had a mean (standard deviation in parentheses) of 1.72 µv (.34) and

1.71 µv (.34) respectively.  A condition effect was introduced by multiplying the Component 1

by a factor of .9 for the small Component 1 cell and 1.1 for the large Component 1 cell. The

peak amplitude of the Component 1 at the focal channel had a mean of 2.2 µv (.30) in the small

Component 1 cell and 2.6 µv (.39) in the large Component 1 cell.  This level of effect was

intended to yield F-values comparable to published P300 studies since it has been shown that

unrealistically  large  condition  effects  can  exaggerate  the  degree  of  misallocation  variance

effects (Beauducel & Debener, 2003).  Table 2 provides the Monte Carlo estimates of Type I

and Type II error rates (and thus the statistical power in the present dataset) since Type I error

is,  by  definition,  the  proportion  of  false  positives  and Type  II  error  is,  by  definition,  the

proportion of false negatives (cf. Davidson, 1972; Keselman, Keselman, & Lix, 1995).
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The scalp  topographies  of  the  components  were generated  using Patrick  Berg's  Dipole

Simulator  program  version  2.1.0.5  (available  for  download  from

http://www.megis.com/udbesa.htm).  The Component 1 corresponds to a single surface dipole

pointed at Cz.  The Component 2 corresponds to a single surface dipole pointed at Pz (Such a

midline equivalent dipole could be produced by two bilateral sources closely spaced on either

side  of  the  midline.   Such  sources  are  too  close  to  model  with  separate  dipoles  without

producing artifactual dipole interactions.  For this reason, BESA has a parameter for keeping

dipoles from approaching each other too closely. For examples of two real ERP components

that are best modeled by such midline point equivalent dipoles see Dehaene, Posner, & Tucker,

1994; Dien et al., 2003b).  Consistent with volume conduction, every channel reflected the two

components  and with  the  same time  course.   The  two components  were  correlated  at  .73

and .76 in the small and large Component 1 cells respectively (when considering only subject

variance), but essentially uncorrelated (less than +/-.12) between the two conditions.  The scalp

topographies of the two components alone are correlated at .44.  Across all the observations

(waveforms)  the  correlation  between  the  two  components  is  reduced  to  an  overall  mean

(correlation  calculated  for  each  simulation,  Fisher-Z  transformed,  averaged,

backtransformed) .43 correlation.

To enhance comparability to real ERP datasets, background EEG from a real dataset (Dien,

Frishkoff, Cerbonne, & Tucker, 2003a) were added to the dataset.  The signal in these EEG

was canceled out by inverting every other trial during the averaging, which has the effect of

canceling out the signal while leaving the noise level intact (Schimmel, 1967).  This procedure

resulted in twenty noise subject averages.  The data were low pass filtered at 30 Hz.  The

standard deviation of the noise ranged from .46 to 1.37 (median 1.04) microvolts across the

epoch.  Consistent with the simulation, the dataset has a 184 ms baseline and 125 Hz sampling

rate.  The reference for both simulated and real background EEG was the average reference

(Bertrand,  Perrin,  &  Pernier,  1985;  Dien,  1998b),  although  the  background  EEG  was

rereferenced from an original right mastoid site.  The twenty averaged background EEGs were
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then added to the twenty subjects in each of the simulated average datasets.  The simulated data

and background noise is presented in Figure 1.

Figure 1

To control for confounds with the relative sizes of the two simulated components, three

additional simulations were run in a second study.  For each simulation, the four variations

were run using the same 100 simulated datasets and four factors were retained according to the

Scree test. In the first simulation the order of the components were switched to test for possible

confounding with the background EEG. Component  2 was moved earlier  to  coincide  with

Component 1's original start time while Component 1 was moved later so that its end time

coincided with Component 2's original end time.  In this fashion, the two components retain

the  same  amount  of  overlap  but  the  former  Component  1  now  overlaps  with  the  former

Component 2's trailing edge rather than its leading edge.  In the second simulation, Component

1 was given the condition effect.  In the third simulation, the scalp topographies of the two

components were switched.  Aside from these changes, the four sets of 100 simulated datasets

were identical in all respects including the pattern of randomized component amplitudes.  Only

the restricted four-factor  solution was examined in this  second study due to computational

limitations and since the effects of factor restriction were already evaluated in Study 1.

As noted earlier, degree of success in extracting the original waveforms was measured for

three aspects: time course, scalp topography, and misallocation of condition effects.

1) Time course accuracy was operationalized as the fit between the time course and the

factor with the best fit to it, measured by a correlation.  Since inferential analysis is not really

appropriate  for  this  use  of  the  correlation  measure,  no  significance  values  are  calculated.
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Before the fit was calculated,  the factor waveforms (factor pattern matrix  since,  unlike the

factor structure matrix, it reflects only the factor and not the factors correlated with it) were

first rescaled to microvolts by multiplying them by the time point standard deviations  (Dien,

1998a).  A similar evaluation was performed for the spatial topographies as described by the

factor scores.  For this measurement, the factor scores across the entire dataset (twenty subjects

and two cells) were first averaged together.  Modeling success is reported as the range and the

median of the correlation measures for both the Component 1 and the Component 2 factors.

This provides a measure of the overall performance of the simulation run for each simulated

component.

Two aspects of this measurement require further explanation: scaling metric and the use of

relative magnitudes rather than absolute magnitudes.  Regarding scaling metrics, it is critical

that any comparisons be made between numbers that are consistently scaled.  For example,

correlation loadings are essentially in standard deviation units whereas covariance loadings are

in the original microvolt loadings.  Correlation loadings cannot therefore be directly compared

to either covariance loadings or the original ERP waveforms until they have been converted to

microvolt scaling or vice versa  (cf. Dien, 1998a; Dien & Frishkoff, in press).  Consider for

example, if one wished to compare car sales over the past decade in the United States to that of

the European Common Market.  If one scaled the U.S. data by dividing each year's price by the

standard deviation of that year alone (as in a covariance loading) but scaled the European data

by dividing all ten annual prices by the same number (as in a correlation loading) then it would

be difficult  to compare the two graphs since the shape of the U.S. graph would have been

changed.  When two things are compared, they need to be compared in the same metric (both

in microvolts or both in standard deviation units); otherwise even identical waveforms can look

quite different.  Thus, although it is common to directly compare a graph of the factor loadings

directly to the ERP waveforms, this can be misleading.  In the current report, all factor loading

information will be converted to microvolt scaling before comparison and interpretation.
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The  second  issue  that  requires  consideration  is  the  use  of  relative  magnitudes  for  the

comparisons.  The issue is that factor loadings (or more specifically the factor structure matrix)

are  the  correlation  between  the  factors  and  the  variables.   This  correlation  represents  the

amount  of  the  variable  variance  accounted  for  by  the  factor  compared  to  the  amount  not

accounted for by the factor.  Thus, the correlation can be reduced not just by a poorer modeling

of the signal in the variable; it can also be reduced by overlapping signals or increased levels of

background noise.  If one compares the absolute factor loadings yielded by the PCA of two

different  datasets,  differences  in  the absolute  factor  loadings (whatever  the scaling)  do not

necessarily reflect differences in the quality of the PCA factor solutions.  The magnitude of two

identically successful factor solutions for a given ERP component might look quite different

depending on what else is going on in the datasets.  The same logic applies to the factor pattern

matrix (which is different from the factor structure matrix only for oblique rotations).

The  absolute  magnitude  of  the  factor  loadings  is  only  meaningful  when  taken  in

conjunction with the factor scores (as in multiplying them together to recreate the amount of an

ERP accounted for at a particular electrode for a particular subject in a particular condition).

While one could compare absolute values in this way, doing so confounds the quality of the

time  course  reproduction  with  the  quality  of  the  scalp  topography  and  condition  effect

reproductions.  In order to keep the evaluation of the time course replication separate from the

evaluation  of  these  other  aspects  of  the results,  only  the relative  magnitudes  of  the  factor

waveforms will be examined.  In other words, only the overall shape of the factor waveforms

will be compared, not their sizes.

2) Scalp topography can be somewhat difficult  to summarize.   One way to do so is to

compute the corresponding equivalent point dipole.  Although multiple inverse solutions can

produce a given scalp topography when the number and the size of the dipoles is allowed to

vary, when the solution is constrained to a single point dipole the result generally appears to be

a unique summary of the scalp topography.  Dipole analyses were conducted using BESA5
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using a four-shell elliptical head model and a single dipole.  Modeling was conducted on the

grand average data, following conventional practice.  An iterative algorithm was utilized in

which the program automatically shifted the position of the dipoles until it found a position of

maximum fit.  To maintain uniformity, all reported solutions are based on a central starting

position.  To guard against local minima issues, solutions were rechecked against front and rear

starting locations; in all cases solutions were not dependent on the starting location.

In order to allow evaluation of the results in the context of ERP/fMRI co-registration, the

source  localizations  were  transformed  into  a  Talairach  coordinate  system  (Talairach  &

Tournoux, 1988) and rendered using Brain Voyager 2000 (4.4). While the intricacies of co-

registration procedures is beyond the scope of this paper, we choose to use this combination of

software in this paper because BESA is arguably the leading ERP source localization software

and the BESA/BrainVoyager combination is the only commercially available combination for

converting the BESA results into Talairach space for comparison with fMRI data.  The MRI

used for rendering is based on an example head included with the software.

3)  In  order  to  characterize  the  implications  for  ANOVA  results,  misallocation  of  the

condition effects was examined with a two within subject-factors repeated measures ANOVA

of Cell (condition1, condition 2) * Site (Cz, Pz) with twenty simulated subjects.  For reasons

illustrated elsewhere (McCarthy & Wood, 1985), the cell effect was mostly expected to appear

in the Cell * Site interaction.  Of course, in the presence of a significant interaction one does

not  interpret  main  effects  so  the  interaction  test  results  are  the  more  important.  SPSS 6.1

calculated the repeated measures statistics.

In order to provide a sense of the practical relevance of the effects for an actual ERP study,

a representative waveform and source solution is provided for each permutation.  These are

intended to allow readers to directly relate the measures to the end result and thus evaluate how

much of an effect (such as a .91 correlation versus a .99 correlation) is of practical import for

their studies.  The simulation with the median spatial correlation is utilized as a representative
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simulation (so that the time course presented is congruent with the source localization and may

be  evaluated  jointly  as  coming  from  the  same  solution).   The  ranking  is  based  on  the

Component 2 factor since (as will be seen) it shows the greatest sensitivity to the variations.

The PCAs were conducted on the simulated average data using the Matlab PCA Toolbox

1.091, freely available for download from: http://www.people.ku.edu/~jdien/downloads.html.

Each individual PCA had 125 variables (the time points) and 2600 observations (65 channels x

2 conditions x 20 subjects). All analyses were conducted with double-precision arithmetic and

identical  parameters  such as convergence criterion (no PCAs failed  to reach convergence).

Since the Kaiser normalization is applied to the Varimax step but not the Promax relaxation

step, the same approach was used with the covariance loadings (weighted during Varimax but

not Promax steps). For the Promax rotations, a Kappa of 3 was adopted, following the default

used  by  SAS  (see  online  documentation  at

http://support.sas.com/onlinedoc/913/docMainpage.jsp for the Power subcommand of PROC

FACTOR).

Results

Study #1. 

1.  Covariance Matrix - As seen in Table 1, the use of a correlation matrix (Conditions 4-6,

10-12)  instead  of  a  covariance  matrix  (Conditions  1-3,  7-9)  resulted  in  notably  lower

accuracies for the restricted solution.  Although these high correlations might seem to be at

ceiling, the waveforms in Figures 2 and 3 illustrate how the differences between these numbers

correspond to noticeable changes in the waveforms.  Examination of the unrestricted solutions

indicates that in this case the two matrices result in largely identical solutions (Conditions 13-

15, 19-21 versus 16-18, 22-24), suggesting that correlation matrices are capable of yielding

equivalent results but are less efficient with respect to numbers of factors retained.
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Figures 2 & 3

Likewise, the ANOVA results summarized in Table 2 indicate a dramatically higher rate of

misallocation  of  condition  variance  to  the  Component  2  factor  when using the  correlation

matrix, but only for the restricted solution (Conditions 4-6, 10-12).  Equally dramatic increases

in source modeling errors are seen in Table 3 for restricted solutions (Conditions 4-6, 10-12).

Given these results, only the covariance matrices will be considered for the remainder of the

results section.

2.  Covariance Loadings – As occurs in Table 1, with covariance matrices and Varimax

rotations (Conditions 1-3), the use of covariance loadings yielded lower accuracies than with

both Kaiser normalization and unweighted loadings for the Component 1 factors and just a

touch higher for the Component 2 factors.  With covariance matrices and Promax rotations

(Conditions 7-9), covariance loadings yielded lower accuracies for both factors.  Turning to the

ANOVA results in Table 2, focusing on the covariance matrix results, the covariance loadings

performed much worse for the Varimax rotations (Conditions 1-3), with a 58% misallocation

rate for the main effect (versus 14 and 15%).  For the Promax rotations (Conditions 7-9), the

results were less clear with more misallocations in the main effect test but fewer misallocations

for the interaction test.  Finally, for the source localization analyses in Table 3 the covariance

loadings were roughly equivalent to the others (less by a millimeter) for the Varimax rotation

(Conditions 1-3) and much worse (about 4 mm) for the Promax rotation (Conditions 7-9) for

the restricted solutions.  For the unrestricted solutions the covariance loadings were better by

about 5 mm for the Varimax rotation (Conditions 13-15) and worse by about 2 mm for the

Promax rotation (Conditions 19-21).  For all the comparisons, the Kaiser normalization and the

unweighted solutions were approximately equivalent.
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3.  Unrestricted Solutions – Looking at Table 1, the results were virtually identical to that

obtained with only four factors for the covariance matrix (Conditions 1-3, 7-9 versus 13-15,

19-21) and dramatically better for the correlation matrix (Conditions 4-6, 10-12 versus 16-18,

22-24).   For  the covariance  matrices,  Component  1  was more accurate  in  the unrestricted

solutions  by  about  1  percent  for  the  Varimax  rotation  and  about  1  percent  worse  for  the

Promax  rotation.   Note  that  the  results  for  the  Kaiser  normalization  and  the  unweighted

loadings were identical for the unrestricted solutions (excepting the effect of rounding errors),

since the communalities will be one for all variables when all factors are retained, resulting in

no weighting changes.  A similar picture is seen for the ANOVA results in Table 2.  For the

source localization results in Table 3 the results are somewhat worse for the Varimax rotation

and better for the Promax rotation.  Overall, the results are mixed.

4.   Promax Rotation  – As occurs  in  Table  1,  the  accuracy  rates  for  Promax rotations

(Conditions 1-3 versus 7-9) are consistently higher for the covariance matrix results in all cases

except for the Component 2 factor of the covariance loading case.  For the ANOVA results in

Table 2, the restricted solutions yield overall better results for the Promax rotation, especially

with the covariance loadings (Condition 7), except for a slightly higher misallocation rate for

Component 2 when using the unweighted and Kaiser Normalized loadings (Conditions 8 & 9).

Similar results are seen for the unrestricted analyses except that Promax provides improved

results across the board (Conditions 13-15 versus 19-21).  The source localization results in

Table 3 display a strongly improved total error for the Promax rotation.

Study #2. 

a) To determine if any of the results were due to a confound with the background EEG

noise, the analysis was repeated with the temporal positions of the two components reversed

but  otherwise  identical  parameters.   Only  the  accuracy  measures  are  presented  since  the

purpose is to determine if the differences in the accuracies of the two simulated components

are  due  to  their  differing  sizes.   Only  the  restricted  solutions  are  presented  due  to
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computational  limits  and since the Study #1 results  should be sufficient  for the purpose of

evaluating that parameter.

As  seen  in  Table  4,  essentially  the  same pattern  of  results  occurs.   Overall,  use  of  a

correlation  matrix  was  more  detrimental  for  the  smaller  Component  1  for  the  restricted

solution.   Likewise,  the  covariance  loadings  were  detrimental  to  the  smaller  component,

especially for the Varimax rotation.  Promax was beneficial to both components (except for the

covariance matrix-Varimax rotation case) but most beneficial to the larger Component 2.

b) To determine if any of the results were due to a confound with the presence of cell

effects, the first analysis was repeated with the cell effect in the Component 2 instead of the

Component 1 but otherwise identical parameters.

Essentially  the same pattern of results  is  seen in Table 5. Overall,  use of a correlation

matrix  was  more  detrimental  for  the  smaller  Component  1  for  the  restricted  solution.

Likewise, the covariance loadings were detrimental to the smaller component, especially for

the Varimax rotation.  Promax was beneficial to both components (except for the covariance

matrix-Varimax rotation case) but most beneficial to the larger Component 2.

c) To determine if any of the results were due to a confound with the scalp topographies,

the first  analysis  was repeated with the scalp topographies  reversed but otherwise identical

parameters.

A slightly different pattern of results is seen in Table 6.  Overall, use of a correlation matrix

was  still  more  detrimental  for  the  smaller  Component  1  factor.   Promax  was  still  most

beneficial for the larger Component 2, but to an even greater degree.  The covariance loading

effect no longer clearly favors the smaller component.

Discussion
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Reasonable arguments can be made regarding each of the options addressed in this report.

The choices of relationship matrix, factor loading weighting, solution restriction, and factor

rotation were examined using a simulation dataset.  For this dataset, the results indicated that a

covariance matrix  was equivalent  to the correlation matrix for an unrestricted solution and

better for a restricted solution, supporting a prior report (Kayser & Tenke, 2003).  For factor

loading weights, the Kaiser Normalization was largely equivalent to the unweighted solution

and both were better than the covariance loadings.  We suggest Kaiser Normalization be used

if for no other reason than it has become accustomed practice to use it.  Regarding solution

restriction,  for  the  recommended  covariance  matrix  the  restricted  solution  was  largely

equivalent  to  the  unrestricted  solution  for  the  time  course  measure.   We  argue  that  any

improvements seen in the misallocation and dipole measures are more than outweighed by the

multiple  comparison  problem,  as  noted  in  the  introduction.   Finally,  the  Promax  rotation

yielded strongly improved results for the time course and the spatial measures, with only a

slight increase in misallocation in the case of the restricted covariance matrix solutions using

unweighted  or  Kaiser  normalized  loadings.   The  results  of  Study  2  did  not  support  the

hypothesis that some of these parameters might favor larger or smaller components (defined in

terms of time course for a temporal PCA).

These  conclusions  agree  with  some  recommendations  made  by  a  recent  paper  in  this

journal  (Kayser & Tenke, 2003) in some respects and disagree in some other respects.  We

completely endorse their conclusion that the covariance matrix yields better results than the

correlation  matrix,  at  least  for  restricted  solutions.   The current  report  also confirms their

observation that correlation and covariance matrix results converge for unrestricted solutions.

Contrary to their report, we did not find improved results from the covariance loadings.

They based their recommendation primarily on the basis of a visual examination of the factor

waveforms  (p.  2314-5)  and  on  the  basis  of  stability  of  ANOVA  effects  (P.  2320).

Unfortunately, the use of covariances in the relationship matrix, the factor loadings, and the
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graphs  were  confounded,  making  it  difficult  to  determine  the  independent  effects  of  each

issue.  Frequently,  these  three  separate  scaling  decisions  were  treated  as  being  a  single

decision, referred to as "covariance-based" and "correlation-based" solutions. Fortunately, their

analyses include a feature that resolves this  ambiguity.   As described in Footnote 1 of the

present report, Kaiser normalization cancels out the effects of the covariance loadings.  Since

Kayser and Tenke (2003) used Kaiser normalization in the entire  report  (as noted in their

appendix), the only real difference between their correlation condition and their covariance

condition was the relationship matrix choice; the effects of covariance loadings were never

actually tested in their report.  Although this decision had the unintended effect of canceling

out  the  covariance  loading  manipulation,  it  does  increase  the  value  of  their  report  for

evaluating the relationship matrix issue.

What, then, is to be made of the difference in the factor waveforms as seen in their Figure

3?  This figure represents one place where two of the three scaling decisions are unconfounded

(i.e., the relationship matrix and factor loading scaling decisions).  Despite our contention that

the two solutions should be mathematically identical, a difference is seen between correlation

and covariance loadings (termed by Kayser and Tenke as the standardized and unstandardized

loadings) with the covariance matrix.  This anomaly can be explained as due to the remaining

confound with the graph scaling decision.  As we noted in the introduction,  even identical

waveforms will look different if one is graphed in standard deviation units and the other is

graphed in microvolt units.  The problem is that this type of scaling change alters not just the

overall amplitude of the waveforms but also their shapes (since each time point has a different

standard  deviation).   They  apparently  graphed  the  correlation  loading  results  in  standard

deviation  units  and  the  covariance  loading  results  in  microvolts.   This  issue  affects  both

Figures 3 and 4 of their report.

We also differ to some extent with their recommendation to avoid truncation (or restriction)

of factor solutions.  We do agree that factor underextraction can be problematic but do not
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therefore conclude that it should not be done at all.  The relevant statistical papers  (Fava &

Velicer,  1992, 1996;  Velicer  & Jackson, 1990; J.  M. Wood et al.,  1996) also warn of the

dangers of overextraction (it can cause factors to be broken down into spurious subfactors).

Regarding the evidence Kayser and Tenke present against underextraction, we suggest that a

more judicious use of the scree test might have yielded different results.  Although a bend can

be seen in their Figure 5 at Factor 4, an additional bend can be seen at Factor 7.  We suspect

more bends are present in eigenvalues past that shown in the figure.  The logic of the scree test

(Cattell, 1966; Cattell & Jaspers, 1967) requires that one take the last bend counting from the

right (i.e., the first place where the eigenvalues start becoming larger than would be expected

from  noise  alone),  not  the  first  bend  counting  from the  left.   Their  results  appear  to  be

consistent with about 15 retained factors.  It would be interesting to see the chart for the Scree

in this vicinity.  Unfortunately, their Figure 5 only shows the first ten eigenvalues.  In any case,

we suggest  that  the  multiple  comparison  issues  outlined  in  the  introduction  outweigh  any

improvements  provided  by  an  unrestricted  solution.   Ultimately,  expert  judgment  will  be

required to determine if  the results are affected by factor underextraction or overextraction

issues.  There is no replacement for expert judgment but its role does need to be restricted to

the point that it can be suitably documented. 

Finally,  Kayser  and Tenke (2003) caution  against  the use  of  oblique  rotations  such as

Promax, although their paper is not directly concerned with this issue.  They state that "the

advantage of Promax and any oblique rotation method is at the same time a disadvantage, as

the analyzed components are no longer independent" (Kayser & Tenke, 2003, p. 2310) and that

"As the probability of Type I errors increases with the number of dependent variables (i.e.,

extracted factors) considered for statistical analysis, the orthogonality of the Varimax solution

counteracts this undesired effect" (Kayser & Tenke, 2003, p. 2309). We are indebted to them

for vocalizing these issues so that they can be discussed.
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The first concern can be addressed by analogy to the related issue of balanced ANOVA

designs.  For between subject conditions, it is desirable to have a balanced design in which

each cell has an equal number of subjects.  If the ANOVA factors are correlated, this can result

in unbalanced designs.  For example, if the two ANOVA factors are median-split depression

and anxiety groups (highly correlated scores) then most of the subjects will fall into the low-

depressed/low-anxious or the high-depressed/high-anxious cells.  Such unbalanced designs are

problematical  because  a  standard  ANOVA  assumes  that  each  cell  is  an  equally  reliable

estimate of the error variance; a cell with only two subjects is certainly not as reliable as a cell

with two hundred subjects.  One addresses this issue by either careful pre-screening to ensure a

balanced sample or one utilizes an ANOVA algorithm that is specially adapted for unbalanced

designs  such  as  unweighted-means  analysis  (Keppel,  1982;  Winer,  1971).   Ignoring  the

problem by applying a standard ANOVA does not solve the problem.  While the purpose of

PCA  is  descriptive  rather  than  inferential,  there  are  similar  issues  regarding  maximizing

interpretability if one's ultimate goal is for each factor to reflect different ERP components.

There is no way that an orthogonal solution for correlated ERP components can avoid being

linear  mixes  of  the  ERP  components  (ignoring  noise  variance).   Ignoring  correlated

components  by  applying  a  factor  analysis  with  uncorrelated  factors  does  not  solve  the

problem2.

Orthogonal solutions are only appropriate when the latent variables in the dataset are in fact

orthogonal.  This is often the case, which is why Varimax rotations are popular.  In the case of

ERP datasets,  however,  the effect of differing scalp topographies  virtually  ensures that  the

latent  variables  will  be correlated  to  a  significant  degree in  a  temporal  PCA, as described

elsewhere  (Dien, 1998a).  Even if the components are otherwise unrelated to each other, the

way spatial variance is used in temporal PCA means that part of the correlation between the

two components will be determined by the similarity of the two scalp topographies; only in the

rare situation of sources that are more or less (depending on the montage) at right angles to

each  other  will  scalp  topography  not  ensure  a  sizeable  correlation  between  the  two

3



Dien Optimizing PCA

components.  Furthermore, since the head is a three-dimensional object, no more than three

components can be at right angles to each other; any more than three components ensures that

at least some of them will have sizeable correlations with each other due to spatial similarity.

For this reason, we suggest that, at least in principle, oblique rotations are more appropriate for

temporal  PCAs;  this  recommendation  is  tempered  by  the  continuing  need  to  evaluate  in

different contexts whether available oblique rotations such as Promax are sufficiently effective

in practice.

As  for  the  second  objection  (that  orthogonal  solutions  control  multiple  comparison

problems and that  oblique solutions  therefore  presumably  do not),  we cannot  endorse this

position  at  all.   Keeping  the  variables  orthogonal  does  nothing  to  control  the  multiple

comparison problem.  Multiple comparison problems (cf. Toothaker, 1991) arise because if one

examines enough null effects, random noise in some of the effects will by chance reach the

significance threshold and produce a spurious result.  Keeping the factors orthogonal will not

have any effect on the presence of random noise in the factor variables.  Thus, using Varimax

rotations will not protect against the ill effects of utilizing unrestricted solutions.

It would be impossible to examine all possible combinations of ERP components and to

identify a procedure that will always in all cases produce the best results.  The goal of this

report is therefore to examine a representative situation and then to recommend a standardized

protocol that we suggest will yield the best results in typical datasets.  In this way, investigators

may obtain protection from the concern that they are massaging the data by manipulating the

many parameters of the PCA process.  Since there will  always be special  cases where the

present protocol will not be appropriate, investigators should consider the option of tailoring

the protocol  when appropriate.   One possible  procedure in cases where such a situation is

suspected is to present the PCA results using both the recommended protocol and the tailored

protocol and then use outside considerations to support the use of tailoring  (cf. Dien et al.,

2003b).
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In conclusion, these results demonstrate that the choice of PCA parameters can have visible

impact on the quality of the results.  Keeping in mind our caveats regarding simulation studies,

we  recommend  that  PCA studies  utilize  a  covariance  matrix,  Kaiser  normalization,  factor

retention, and Promax rotation.  We make this suggestion on the basis of the relative rankings

of the different permutations, although whether these choices ultimately make a meaningful

difference to a study depend on the goals of the analysis and the required level of accuracy.

We  note  that  the  choice  of  the  PCA parameters  can  make  as  much  as  a  five  centimeter

difference in localization results, a substantive distance when co-registering with fMRI data.

We also strongly recommend using microvolt-scaled factor loadings when visually comparing

factor loadings to raw microvolt scaled averaged data.  We would also like to take this moment

to again affirm that although we have outlined a number of disagreements with Kayser and

Tenke (2003), we felt this paper made important contributions in raising the issues it did and in

providing graphic demonstrations of the effects of retaining too few factors.
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Table 1.

# Condition Component 1 Median Component 2 Median Component Correlation
1 COVcVAR 0.89 (0.89 - 0.90) 0.98 (0.97 - 0.99) 0.0
2 COVkVAR 0.98 (0.98 - 0.98) 0.97 (0.97 - 0.98) 0.0
3 COVnVAR 0.98 (0.98 - 0.99) 0.97 (0.97 - 0.97) 0.0
4 CORcVAR 0.59 (0.53 - 0.65) 0.89 (0.87 - 0.90) 0.0
5 CORkVAR 0.56 (0.52 - 0.63) 0.90 (0.89 - 0.91) 0.0
6 CORnVAR 0.68 (0.54 - 0.75) 0.90 (0.89 - 0.91) 0.0
7 COVcPRO 0.99 (0.99 - 0.99) 0.97 (0.97 - 0.98) .43
8 COVkPRO 1.00 (0.99 - 1.00) 0.99 (0.99 - 0.99) .47
9 COVnPRO 1.00 (0.99 - 1.00) 0.99 (0.99 - 1.00) .47
10 CORcPRO 0.67 (0.55 - 0.72) 0.88 (0.86 - 0.90) .23
11 CORkPRO 0.65 (0.55 - 0.71) 0.89 (0.88 - 0.90) .23
12 CORnPRO 0.67 (0.54 - 0.74) 0.89 (0.88 - 0.91) .21

13 65fCOVcVAR 0.89 (0.89 - 0.90) 0.98 (0.97 - 0.99) 0.0
14 65fCOVkVAR 0.99 (0.99 - 0.99) 0.97 (0.97 - 0.97) 0.0
15 65fCOVnVAR 0.99 (0.99 - 0.99) 0.97 (0.97 - 0.97) 0.0
16 65fCORcVAR 0.89 (0.89 - 0.90) 0.98 (0.97 - 0.99) 0.0
17 65fCORkVAR 0.99 (0.99 - 0.99) 0.97 (0.97 - 0.97) 0.0
18 65fCORnVAR 0.99 (0.99 - 0.99) 0.97 (0.97 - 0.97) 0.0
19 65fCOVcPRO 0.99 (0.99 - 1.00) 0.97 (0.96 - 0.97) .53
20 65fCOVkPRO 0.99 (0.98 - 0.99) 0.99 (0.99 - 0.99) .48
21 65fCOVnPRO 0.99 (0.98 - 0.99) 0.99 (0.99 - 0.99) .48
22 65fCORcPRO 0.99 (0.99 - 1.00) 0.97 (0.96 - 0.97) .53
23 65fCORkPRO 0.99 (0.99 - 0.99) 0.99 (0.99 - 0.99) .48
24 65fCORnPRO 0.99 (0.99 - 0.99) 0.99 (0.99 - 0.99) .48

Correlations between the original waveforms and the factors for each of the rotations for the

standard condition.   Listed are the median  values  for Component  1 and for Component  2

(considered separately), with the low and high values listed in parentheses.  The correlation

column  presents  the  correlation  between  the  two  factors  (correlation  calculated  for  each

simulation, Fisher-Z transformed, averaged, backtransformed), leaving out simulations where

the  same  factor  was  the  best  fit  for  both  components.  The  original  correlation  was  .43.

COV=covariance  matrix.   COR=correlation  matrix.   c=covariance  loading.   k=Kaiser

normalization.   n=not weighted loadings.   VAR=Varimax rotation.   PRO=Promax rotation.

65f=unrestricted solution.
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Table 2.

# Condition C1

F C

C1

sig C

C2

F C

C2

sig C

C1

F C*S

C1

sig C*S

C2

F C*S

C2

sig C*S

C1

Total

C2

Total
1 COVcVAR 15.5 98 6.2 58 16.4 99 0.6 0 99 58
2 COVkVAR 26.5 100 2.0 14 9.7 86 1.1 7 100 14
3 COVnVAR 25.0 100 2.1 15 9.5 83 1.2 8 100 15
4 CORcVAR 1.4 0 .6 0 .9 8 8.3 81 8 81
5 CORkVAR .7 1 1.0 7 1.6 14 7.4 73 14 73
6 CORnVAR .6 0 .9 5 .4 0 7.0 73 0 73
7 COVcPRO 9.7 83 2.5 17 22.6 100 1.8 11 100 17
8 COVkPRO 16.1 98 1.6 13 17.7 99 2.6 16 99 17
9 COVnPRO 15.2 98 1.7 13 17.7 99 2.6 16 99 17
10 CORcPRO 1.7 0 .9 6 .1 0 6.6 71 0 71
11 CORkPRO .6 0 1.0 6 .2 0 6.4 68 0 68
12 CORnPRO .8 0 1.0 6 .2 0 6.3 66 0 66

13 65fCOVcVAR 14.6 96 5.6 49 18.2 99 0.7 0 99 49
14 65fCOVkVAR 27.3 100 2.1 15 9.5 82 1.4 9 100 15
15 65fCOVnVAR 27.3 100 2.1 15 9.5 82 1.4 9 100 15
16 65fCORcVAR 14.7 96 5.6 49 18.3 99 0.7 0 99 49
17 65fCORkVAR 27.2 100 2.1 15 9.4 82 1.4 9 100 15
18 65fCORnVAR 27.2 100 2.1 15 9.4 82 1.4 9 100 15
19 65fCOVcPRO 8.2 78 2.1 15 24.1 100 1.2 7 100 15
20 65fCOVkPRO 12.4 93 1.6 12 20.1 99 1.6 8 99 12
21 65fCOVnPRO 12.4 93 1.6 12 20.1 99 1.6 8 99 12
22 65fCORcPRO 8.8 77 2.1 15 23.5 100 1.2 7 100 15
23 65fCORkPRO 13.5 95 1.6 12 20.0 99 1.7 8 99 12
24 65fCORnPRO 13.5 95 1.6 12 20.0 99 1.7 9 99 12

Misallocation of condition effects  in ANOVAs.  Table provides the mean F score and the

number of significant tests out of the 100 simulations.  Each test has 1 degree of freedom in the

numerator and 19 in the denominator.  Summary provided for both the main cell effect (C) as

well as the interaction between site and cell (C*S). The Total columns provide the total number

of  simulations  showing  significant  effects  in  either/both  tests.   C1=Component1.

C2=Component 2.  COV=covariance matrix.  COR=correlation matrix.  c=covariance loading.

k=Kaiser normalization.  n=not weighted loadings.  VAR=Varimax rotation.  PRO=Promax

rotation.  65f=unrestricted solution.

3



Dien Optimizing PCA

Table 3.

# Condition Component  1

RV

Component  1

Talairach

Component  2

RV

Component  2

Talairach

Error

Original 0.075% 2 -29 58 0.321% 0 -69 36
1 COVcVAR 0.249% 3 -29 58 3.681% -2 -71 49 14.30
2 COVkVAR 1.932% 3 -35 59 0.619% -2 -74 44 15.81
3 COVnVAR 2.285% 3 -35 60 0.546% -2 -74 44 16.05
4 CORcVAR 13.598% 0 -51 67 2.306% 0 -58 30 36.38
5 CORkVAR 1.865% 0 -60 30 1.865% 0 -60 30 52.64
6 CORnVAR 15.123% 1 -43 63 1.765% 0 -60 30 25.72
7 COVcPRO 0.712% 3 -27 55 0.561% -1 -71 40 8.32
8 COVkPRO 0.225% 3 -28 57 0.523% -1 -67 35 4.18
9 COVnPRO 0.211% 3 -28 57 0.539% -1 -67 35 4.18
10 CORcPRO 15.546% -1 -53 66 2.095% 0 -60 30 36.29
11 CORkPRO 15.736% 0 -52 67 1.928% 0 -60 30 35.60
12 CORnPRO 14.688% 0 -52 67 1.984% 0 -60 30 35.60

13 65fCOVcVAR 0.288% 3 -30 58 3.644% -3 -71 49 14.90
14 65fCOVkVAR 2.829% 3 -39 61 0.718% -3 -75 43 20.18
15 65fCOVnVAR 2.829% 3 -39 61 0.717% -3 -75 43 20.18
16 65fCORcVAR 0.285% 3 -30 58 3.660% -3 -71 49 14.90
17 65fCORkVAR 2.817% 3 -39 61 0.720% -3 -75 43 20.18
18 65fCORnVAR 2.818% 3 -39 61 0.720% -3 -75 43 20.18
19 65fCOVcPRO 0.781% 3 -28 56 0.715% -2 -69 38 5.28
20 65fCOVkPRO 0.350% 2 -29 58 0.649% -2 -67 35 3.00
21 65fCOVnPRO 0.356% 2 -29 58 0.692% -2 -66 35 3.74
22 65fCORcPRO 0.708% 2 -28 57 0.664% -2 -69 38 4.24
23 65fCORkPRO 0.348% 2 -29 58 0.672% -2 -67 35 3.00
24 65fCORnPRO 0.348% 2 -29 58 0.672% -2 -67 35 3.00

Effect of different rotations on solutions for representative simulation.  Listed is the residual

variance  (RV)  for  the  solutions  for  the  two  components,  their  Talairach  coordinates  (in

millimeters), and the sum of the Pythagorean distance errors for the two components. For the

CORcVAR and  the  CORkVAR  simulations,  the  same  factor  was  the  best  fit  for  both

components. COV=covariance  matrix.   COR=correlation  matrix.   c=covariance  loading.

k=Kaiser normalization.  n=not weighted loadings.  VAR=Varimax rotation.  PRO=Promax

rotation.  65f=unrestricted solution.
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Table 4.

# Condition Component 1 Median Component 2 Median
1 COVcVAR 0.87 (0.86 - 0.88) 0.98 (0.98 - 0.99)
2 COVkVAR 0.98 (0.97 - 0.98) 0.97 (0.97 - 0.98)
3 COVnVAR 0.98 (0.98 - 0.99) 0.97 (0.96 - 0.97)
4 CORcVAR 0.56 (0.54 - 0.59) 0.88 (0.86 - 0.89)
5 CORkVAR 0.64 (0.56 - 0.69) 0.89 (0.88 - 0.91)
6 CORnVAR 0.71 (0.61 - 0.76) 0.90 (0.89 - 0.91)
7 COVcPRO 0.98 (0.97 - 0.98) 0.96 (0.95 - 0.97)
8 COVkPRO 0.99 (0.99 - 1.00) 0.99 (0.98 - 0.99)
9 COVnPRO 0.99 (0.99 - 1.00) 0.99 (0.99 - 0.99)
10 CORcPRO 0.58 (0.54 - 0.64) 0.89 (0.87 - 0.91)
11 CORkPRO 0.57 (0.53 - 0.63) 0.90 (0.89 - 0.91)
12 CORnPRO 0.60 (0.53 - 0.67) 0.91 (0.90 - 0.92)

Correlations between the original waveforms and the factors for each of the rotations for the

reversed order condition.  Listed are the low, median, and high correlations for Component 1

and for Component 2 (considered separately).  In this study, the Component 1 has actually

been moved to a longer  latency while  the Component  2 has been moved to be the earlier

component.  COV=covariance  matrix.   COR=correlation  matrix.   c=covariance  loading.

k=Kaiser normalization.  n=not weighted loadings.  VAR=Varimax rotation.  PRO=Promax

rotation.  65f=unrestricted solution.

Table 5.

# Condition Component 1 Median Component 2 Median
1 COVcVAR 0.87 (0.86 - 0.88) 0.98 (0.98 - 0.99)
2 COVkVAR 0.98 (0.97 - 0.98) 0.97 (0.97 - 0.98)
3 COVnVAR 0.98 (0.98 - 0.99) 0.97 (0.96 - 0.97)
4 CORcVAR 0.56 (0.54 - 0.59) 0.88 (0.86 - 0.89)
5 CORkVAR 0.64 (0.56 - 0.69) 0.89 (0.88 - 0.91)
6 CORnVAR 0.71 (0.61 - 0.76) 0.90 (0.89 - 0.91)
7 COVcPRO 0.98 (0.97 - 0.98) 0.96 (0.95 - 0.97)
8 COVkPRO 0.99 (0.99 - 1.00) 0.99 (0.98 - 0.99)
9 COVnPRO 0.99 (0.99 - 1.00) 0.99 (0.99 - 0.99)
10 CORcPRO 0.58 (0.54 - 0.64) 0.89 (0.87 - 0.91)
11 CORkPRO 0.57 (0.53 - 0.63) 0.90 (0.89 - 0.91)
12 CORnPRO 0.60 (0.53 - 0.67) 0.91 (0.90 - 0.92)
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Correlations between the original waveforms and the factors for each of the rotations for the

reversed  cell  effect  condition.   Listed  are  the  low,  median,  and  high  correlations  for

Component  1  and  for  Component  2  (considered  separately).  COV=covariance  matrix.

COR=correlation matrix.   c=covariance loading.   k=Kaiser  normalization.   n=not weighted

loadings.  VAR=Varimax rotation.  PRO=Promax rotation.  65f=unrestricted solution.

Table 6.

# Condition Component 1 Median Component 2 Median
1 COVcVAR 0.97 (0.97 - 0.98) 0.97 (0.97 - 0.98)
2 COVkVAR 0.95 (0.91 - 0.96) 0.99 (0.98 - 0.99)
3 COVnVAR 0.98 (0.97 - 0.98) 0.98 (0.98 - 0.98)
4 CORcVAR 0.49 (0.42 - 0.62) 0.96 (0.95 - 0.96)
5 CORkVAR 0.53 (0.48 - 0.57) 0.96 (0.96 - 0.97)
6 CORnVAR 0.50 (0.45 - 0.57) 0.96 (0.95 - 0.97)
7 COVcPRO 0.96 (0.95 - 0.97) 1.00 (1.00 - 1.00)
8 COVkPRO 0.95 (0.91 - 0.97) 1.00 (1.00 - 1.00)
9 COVnPRO 0.96 (0.95 - 0.97) 1.00 (1.00 - 1.00)
10 CORcPRO 0.48 (0.40 - 0.61) 0.96 (0.95 - 0.97)
11 CORkPRO 0.50 (0.40 - 0.57) 0.96 (0.96 - 0.97)
12 CORnPRO 0.50 (0.40 - 0.57) 0.96 (0.96 - 0.97)

Correlations between the original waveforms and the factors for each of the rotations for the

reversed  topography  condition.   Listed  are  the  low,  median,  and  high  correlations  for

Component  1  and  for  Component  2  (considered  separately).  COV=covariance  matrix.

COR=correlation matrix.   c=covariance loading.   k=Kaiser  normalization.   n=not weighted

loadings.  VAR=Varimax rotation.  PRO=Promax rotation.  65f=unrestricted solution.
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Footnotes

1.  Given a simple dataset with only two factors, the factor loadings for variable X are X1

and X2.  The covariance loadings are SX1 and SX2 where S is the standard deviation of the

variable.  The communality C of this variable is computed as the sum of the squared loadings:

C = (SX1)2 + (SX2)2 = S2(X1 + X2)2 

When the covariance loadings are divided by the square root of the communality they end

up being:

X1/(X1 + X2) and X2/(X1 + X2)

A caveat for this  conclusion is that if  the communalities were based on the correlation

loadings rather than on the covariance loadings, then the normalization would not cancel out

the covariance loading procedure.  We are not aware of any statistical packages using such a

procedure but it is possible.

2. The argument that an orthogonal solution is preferable no doubt arises from the intuition

that if the variable (factor) that has no condition effect is allowed to be correlated with the

variable (factor) that does have a condition effect, then the former variable will end up with a

condition  effect  too.   This  concern  can  be  addressed by clarifying  that  there  are  multiple

sources of variance in these variables (condition, subject, channels).  The overall correlation

between the two variables (factors) can be conceptualized as the sum of the different sources of

partial correlation (Cohen & Cohen, 1983).  Two variables can be correlated overall due to two

sources  of  partial  correlation  (subject  and  channels)  without  the  other  source  of  variance

(condition) being correlated.  If the two variables (factors) are forced to be uncorrelated, this is

likely to be accomplished by introducing a correlation in the condition component to cancel out
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the existing subject and channel partial correlations.  The result would be variables that are

overall uncorrelated but that now include misallocated condition effects.
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Figure Captions

Figure 1.  Scalp Topography of Simulated Components and Background Noise.  Waveforms

represent  grand  average  of  background  noise  summed  across  both  conditions.   Simulated

components are presented with an amplitude at the middle of the random range (3 microvolts).

The channels are laid out topographically with the top being the front of the head.

Figure 2.  Effect of PCA Variations on Four Factor Waveforms.  The bottom graph presents

the original waveforms.  The other graphs present the factor loadings (factor patterns scaled to

microvolts)  for the representative simulation (median reconstruction of Component 2).  For

comparison's sake, each waveform is scaled so that the maximum amplitude is set to the top of

the graph. For the CORkVAR simulation the same factor was the best fit for both components.

COV=covariance  matrix.   COR=Correlation  matrix.   c=covariance  loading.   k=Kaiser

normalization.  n=not weighted loadings.  VAR=Varimax rotation.  PRO=Promax rotation.

Figure 3.   Effect  of PCA Variations  on Sixty-Five Factor  Waveforms.   The bottom graph

presents the original waveforms.  The other graphs present the factor loadings (factor patterns

scaled to microvolts) for the representative simulation (median reconstruction of Component

2).  For comparison's sake, each waveform is scaled so that the maximum amplitude is set to

the  top  of  the  graph.  COV=covariance  matrix.   COR=Correlation  matrix.   c=covariance

loading.   k=Kaiser  normalization.   n=not  weighted  loadings.   VAR=Varimax  rotation.

PRO=Promax rotation.
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